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Two-dimensional granular flow in a small-angle funnel
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We have investigated a granular flow consisting of a single layer of uniform balls in a two dimensional
funnel. The qualitative behavior of the flow depends in a sensitive way on the geometry. For a particular
configuration in which only the funnel opening angles varied, we find three regimes. Whgn>2°, the flow
is dense and steady, and the flow rate is determined by the geometry at the outlet. Wke8811®, the flow
is intermittent, consisting of quasiperiodic kinematic waves, probably shock waves, propagating against the
flow. The flow rate reaches its maximum in this regime. WBen0.05°, the waves become stationary, and the
flow rate is now determined by the geometry at the inlet. We also measure the number density fluctuations of
the flow and their power spectra. For all flows, the power spectra are white at low frequencies with structures
at higher frequencies resulting from the kinematic waves and short-range correlations.
[S1063-651%96)02510-X

PACS numbeps): 46.10+z, 83.70.Fn, 05.46;j

I. INTRODUCTION [20,21], lattice gas automatéd GA) [22], and cellular au-
tomata[ 23]. Both the MD and LGA simulations have found

The properties of granular matter are as varied as they adensity waves in the flow. In particular, the LGA simulations
unusual.(For reviews and recent developments, see, for exof flow in a pipe[22] produced kinematic waves with f1/
ample, Refs[1-7].) In particular, granular flows differ in hoise in the power spectrum of the density fluctuations, al-
many respects from hydrodynamic flows. It is known, forthough only for special values of injection rates or average
example, that the flow rate in an hourglass is essentially indensities. Nevertheless, the presence of dissipation and
dependent of the head of the granular matd8al Further-  boundary roughness were found to be of paramount impor-
more, the flow is not necessarily steady, for example, theréance in generating kinematic wave®Vve have also been
can be fluctuations in the flow rate. informed that when friction was turned off completely in

In this paper we have examined the flow properties of aMD simulations, there were no kinematic waved].)
single layer of uniform balls rolling down an inclined plane  The paper is organized as follows. In Sec. Il we describe
through a two-dimensional funné®]. It is therefore a two the experimental setup. In Sec. lll we discuss the qualitative
dimensional analog of an hourglass, but with the capabilitypehavior of the flow, and present the number density fluctua-
to actually observe details of the flow. We measure averagon measurements and their power spectra. The flow rate
flow rates and also number density fluctuations and theimeasurements are described in Sec. IV, and finally Sec. V
power spectra. contains a summary of the work.

Previous experimental studies of granular flows have
mostly concentrated on measuring steady-state properties of
stresses and flow velocitigd0], and density profile$11].
Dynamic studies are less common. Density waves have been The granular material was composed of 3.175 mm diam-
observed in wide-angle hoppel$,12]. Dynamic measure- eter brass ball§0.2% sphericity of mass 0.14 g. Brass was
ments have been made of the density fluctuations of sand imecessary to avoid problems caused by the slow magnetiza-
an hourglass by Schick and VerveEi8]. They found den- tion of steel balls. Approximately 50 000 balls were used in
sity waves in the form of “slugs” whose power spectrum the experiment. When piled, their angle of repose was deter-
yielded an apparent flLfegion. This experiment was the mo- mined to be~15°.
tivation for the present work, although, as will be shown The experimental setup is shown in Figall Two alumi-
later, we find no 1/ noise.(We have also repeated the hour- num walls(A) of height 3.2 mm(slightly greater than one
glass experiment and suggest a simpler interpretation of thieall diametey rested @ a 3 mlong transparent acrylic plane
power spectrunil4].) More recently, Wuet al. [15] have (B). The walls hd a 2 mlong straight section which then
studied the flow rate fluctuations in an hourglass and haveurved smoothly at the tofb0 cm radius of curvatujeto
observed a periodic “ticking” when there is a counterflow of form a reservoir areC). They could be adjusted so as to
air. vary the geometry of the funnel and were grounded to dis-

Theoretically, a wide variety of methods including plas- charge static electricity carried by the balls. A second trans-
ticity theory [2], hydrodynamicq16], soil mechanic§17],  parent covering sheéhot shown was placed on top of the
kinetic gas theory18], and statistical mechani¢49] have  walls. (This was necessary since the kinematic waves which
been applied to granular matter. However, these tend to tawe will discuss later could be sufficiently violent to kick
get only certain aspects of the observed phenomena, armhlls out of the funnel. The plane(B) was mounted to a
there is as yet no comprehensive theory. Computer simuldable at one end by a rotating joi®) so its incline could be
tions have been performed using molecular dynarit®) adjusted with a jackE).

Il. EXPERIMENT
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FIG. 2. A schematic top view of the funnel showing the geom-
etry.

] hence better averages, the balls were recycled by pouring
L O —— T them back onto the reservoir area in such a way that the flow
B TR )AL was not visibly disturbed.

I ]
i - ]

FIG. 1. (a) The experimental setugh) A number density mea- Interstitial fluid effects

suring device(see text The Bagnold number measures the ratio of the viscous
drag on an object to its weight, and hence the importance of
A device for measuring the local number density, shownthe effect of the interstitial fluid on the granular flow. For
in detail in Fig. 1b), consisted of a slidéF) mounted on a laminar flow around &nonrotating sphere of radiug and
rail (G) so that it could be positioned anywhere along themassm, Ba=6m7va/mg where 7 is the dynamic viscosity
funnel A 1 mW 670 nmlaser diodgH) and a photodiodé)  of the fluid, v is the mean relative velocity, angl is the
were mounted on the slide so that the beam passed througfravitational acceleration. In our experiment, the largest ve-
the plane(B). The beam was focused in the plane of the ballgocity a ball can achievéi.e., rolling freely down the plane
forming a spot~1% of the cross-sectional area of a ball. js ~100 cm/s, so withy=1.7x10"* g/cm s for air, Ba
This is effectively a point measurement and the photodiode-10~4, which would suggest that viscous drag is an unim-
output was either low or high depending on whether thergyortant effect. However, strong collective effects can appear
was a ball in the beam or not. All measurements were madgyr sand flow in an hourglass even though the Bagnold num-
along the center line of the funnéWe also made measure- per is smal[15]. We do not encounter these effects since our
ments usig a 1 mmwide line detector which covered the system is not sealed and there is no counterflow of air.
width of the funnel, but this was technically cumbersome ~ we must also consider if the interstitial fluid flow is, in
and yielded essentially the same resulhe detector was fact, laminar, since turbulence can significantly increase the
light shielded as a precaution, although the signal-to-noisgiscous drag. Using the numbers given above, and the kine-
ratio was not a problem. The signal from the photodiode wasnatic viscosity for airv=0.13 cnf/s, we obtain a Reynold's
measured with a HP3562A Dynamic Signal Analyzer. Thenumber Re-2av/v~130. Boundary layer separation, time
frequency response of the photodiode is nominally flat up tqjependent flow, and turbulence occur at R&5, 130, and
~10 kHz, but we never measured beyond 1 kHz. 200, respectivelyf25], so for our worst-case estimate, we

A top view schematic of the geometry of the funnel is may be nearing a regime where turbulence will have some
shown in Fig. 2(with the exception of the inclination angle  effect on the flow.

There were three independent flow parameters which were
varied in the following ranges: opening ange (0°—4°), IIl. GENERAL BEHAVIOR
outlet width D (0—30 mm), and inclination angled (0°-5
°). The detector positiox was measured from the outlet. A well-known property of the flow of granular material
The other parameters in the figure will be discussed later. through apertures is the existence of stagnant regibpall

At the beginning of a run, the outlet was blocked, and theflow occurs in a pseudofunnel with an opening angle
balls were poured onto the reservoir area and allowed to filtalled the angle of approach. For example, for steel balls in
the system. After a short transient period, the behavior of théwo dimensionsB,~15° [1]. In the present experiment, we
flow was independent of the initial configuration of the ballsare always well below the angle of approach so there is never
in the reservoir, whether random or close packed, or simply stagnant region. The position of the free-fall arch, the ra-
left in a pile, which was by far the most convenie(8ince  dius at which the balls flow freely and no longer engage in
the angle of inclination was always far below the angle ofcollective behavior, is given bfR,= (D —Kk)/2sin3; where
repose, the balls would form a two-dimensional layer wellk is the statistically empty space correctiphl. If S<p.,
before entering the funneglFlow rates varied betweer50  thenk is small, and the free-fall arch occurs at the physical
and 500 balls/s, so a single run with 50 000 balls lasted 100-end of the funnel, i.e.Ry=D/2singB. [However, we have
1000 s accordingly. In most cases, to obtain longer runs anfbund that at very small angle@& 1°) fluctuations become
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The features just discussed are evident in the number den-
sity measurements and their power spectra. The raw signal

a) =2.0°
@ B V(t) from the photodiodgwhich is linearly related to the
number densityis shown for this regime in Fig.(4). Due to
(b) p=0.2° the high density, the beam is mostly blocked. A composite
power spectrum of this signal is shown in Figab The
(C) P=0°  Syteinttees e wtuipRdpiiU .« ¢ - " oecot o0 Spectrum is white at low frequencies with some structures at
t higher frequency and finally a rolloff. The rolloff reflects the

_ _ shape function of an individual ball. This is clear if we com-
_FIG.3. Snapshot video pictures of the flow with=10 mm and  pute the mean velocity(x) of a ball at the measuring posi-

6=4.1°. The ;ystem is illuminated from belqw. Each. picture is 25tion x. The number flow rate iQ=n_v(X)D(X) wheren is
cm long with its center at=20 cm. The flow is from right to left. . _ . .

. , . ) the mean number density, a@(x)=D +2xg is the width
(a) Steady flow. The balls form a triangular lattice with white shearOf the funnel at the measurina point. The mean number den-
lines between triangular crystallitd®) Intermittent flow. Thereisa . . 9 2p ) . .

sity can be written a®m=C/m7a” where C is the packing

shock front(arrow) moving to the right against the flowic) Pipe . .

flow. In the center is a stationafput fluctuating shock front(ar-  raction. Thus, for a typical flow rate @@= 150 balls/s, and

row). C=Cax, We find that atx=20 cm,v~5.5 cm/s. The fre-
guency associated with a single ball is thef2a~20 Hz,

important and the free-fall arch is no longer well defijed. Which is approximately where the rolloff occurs.

The fundamental property of dilatancy, formulated by The small peak at-0.5 Hz is attributed to the nearly
Reynolds[26], is still conceptually important to the under- periodic dilatant fluctuations produced at the outlet. The
standing of granular flows. It simply states that a granulalarger peaks are due to the shear lines. The distar(cg
material must expand in order to flow. In particular, this will between the shear lines is found approximately from the ge-
result in large density gradients near an aperture which magmetry to beA(x)zD(x)/_\/§~1.4 cm atx=20 cm. This
create density wavd4]. If the granular material is treated as results in a periodicity atv/A~4.0 Hz which is the peak
a continuum, it is possible to show that there will be twoindicated by the arrow in Fig.(8). The peaks at higher fre-
types of density waves: kinematimass transportand dy- quencies are its harmonicéThere is also a weak peak at
namic (sound [20,27). In this work, we only observe and ~2 Hz which would be the actual periodicity of the shear
measure kinematic waves. lines if one took their orientation into account. However,

We will now describe the general behavior of the flow. since we are making a point measurement, it is only weakly
Since it appeared that the funnel opening aigjlsee Fig. 2  sensitive to the orientationThere are no peaks from the
had the strongest effect, we will use it to parametrize theclose packed triangular lattice of the balls since the lattice
different flow regimes, although the actual values will, of crosses the light beam at an angle which depends and
course, depend on the particular configuration. For the rest dfence never through a lattice vectexcept for special val-
this section, we consider a configuration where the other paies of 3).

rameters were fixed & =10 mm andéd=4.1°. The position Although the detailed shape of a spectrum depends on the
of the detector wag=20 cm unless stated otherwise. measuring position, it is not qualitatively affected by vary-
ing it. For example, at largex the distance between shear
A. Steady flow: g>2° lines increases and the mean flow velocity decreases, hence

. . . . . the corresponding peak positions shift to lower frequencies.
In this regime the flow is quite dense, as may be seen in a P gp P q

shapshot video picture in Fig(&@. Hence, since the balls are
monodisperse, they tend to arrange in a triangular lattice and
always such that a primitive lattice vector is parallel to one Below 8~1° the small dilatant fluctuations observed in
of the walls. Locally, this structure has the maximum pack-the steady flow regime form kinematic waves which propa-
ing fraction in two dimension€ .= 7/2,/3=0.91. As the gate against the flow. AB=1° they tend to decay rapidly,
funnel narrows, however, the triangular lattice must necesbut by 8=0.2° they propagate the whole length of the fun-
sarily rearrange itself, forming the white shear lines and thenel, only decaying in the reservoir. These are easily visible
triangular crystallites observable in the figure. The balls apby eye and appear as rather local high-density packets shoot-
pear to mostly roll, but since they are in close contact, theyng upstream at about 1 m/s. They also appear to be pro-
must necessarily slide against each other. duced at roughyl 1 s intervals. Consequently, usually no
As discussed earlier, dilatant fluctuations are, in fact, obmore than 2—3 packets can be seen in the system at one time.
served at the aperture, i.e., the outlet, of the funnel. TheyAs B is decreased further, the nature of the shock waves
appear to occur nearly periodically, which may be a conseseems to change. Whegdr0.1°, they can be produced any-
guence of the periodicity of the shear lines, although it iswhere in the funnel. The mechanism for producing them no
possible that they are inherently periodic. However, thesdonger seems to be the dilatant fluctuations at the outlet, but
fluctuations are rather weak, and the flow is essentiallyather the interactions of the balls with the boundaries of the
steady. We also note that in this regime, the flow rate ifunnel, and with each other. Interestingly enough, the flow
completely determined by the geometry at the outlet, e.g., theate reaches its maximum in this flow regimeBat 0.5°. We
outlet width D. Neither the geometry at the inlet to the will discuss this later in Sec. IVA.
straight section nor the length of the funnel affect the flow A video snapshot of a packet is shown in Figh)3for
rate. B=0.2°. At the left, one observes the density slowly build-

B. Intermittent flow: 0.1° <g=<1°
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FIG. 4. The raw time signal from the photodiode, sampled at
frequencyf, for the different regimes. A high levéd V) indicates FIG. 5. Composite power spectra in the different flow regimes.
that the beam is blocked. The signals have been Nyquist filteredhe spectra consist of three separate measurements: 0—Q10Hz
which results in some ringing irfa) and (b). (a) Steady flow averageg 0.1-80 Hz(200 averaggs and 80—800 HZ200 aver-
(fs=200 H2. The flow is dense and the beam is mostly blocked.age$. Structures below 0.1 Hz are not statistically significaa}.
(b) Intermittent flow f =200 H2. High-density shock waves block Steady flow. The arrow indicates the peak from the periodic shear
the beam in an apparently periodic manngj. Pipe flow (f;=2 lines. (b) Intermittent flow. The weak peak at1l Hz is from the
kHz). The passage of individual balls can be observed. quasiperiodic shock wave&) Pipe flow.
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ing up to a short, nearly close packed region, then dropping
rather abruptlyarrow) to a much lower-density region. This
strongly resembles the profile expected for a kinematic shock
wave with some broadening due to dissipatj@d]. This is

not surprising since it is well known that under some very
general conditions kinematic waves will evolve into shock
waves that may propagate against the f[@#]. In the low-
density region the balls both roll freely and slide when they
collide. They do not noticeably bounce backward, even at the
shock front.

o~
N’
(7]

We can roughly estimate the expected shock wave veloc- — x=20cm
ity from the available data. A kinematic shock wave travels - x=50cm
with velocity u=(nyv,—nyv,)/(N,—n;) where ny, and
v, are the mean number densities and velocities to the right 10 _2 1 0 \
(1) and left(2) of the shock frontarrow in Fig. 3(b) [27]. 0 10 10 W0 10 10
From the figure, we find that,/n;~2. From observing the f (HZ)
pulse widths for individual balls in the low-density region,
we estimate that ;~50 cm/s.(The mean ball velocity at FIG. 6. Dependence of the power spectrum on the measuring

x=20 cm, deduced from the flow rate as in Sec. Il A, is position.
=35 cm/s) Since the balls are observed to momentarily stop
at the shock front, we will suppose tha;~0 (or at least When balls enter the pipe from the reservoir, at first they roll
that v,/v1<€ny/ny). Thus we predict thau~—-50 cm/s freely, accelerating down the incline. It would appear that
where the sign indicates that the shock wave moves in thehen they reach a certain velocity, they experience a serious
direction opposite the flow. This is consistent with our mea-interaction with the covering sheet, slowing them down dra-
surements which we show later in Sec. IlID. matically. Immediately, balls from behind back up and form
A raw signal measured in the intermittent flow regime isa jam. As balls leave the jam, they repeat this process, ac-
shown in Fig. 4b). The short blocked regions are a conse-counting for the nearly equally spaced positions of the shock
guence of the short, high-density shock waves. As was obwaves. When the covering sheet was removed, no jams were
served by eye, these appear to occur almost periodically witbbserved at all. This demonstrates the importance of rough-
a period of~0.8 s. A composite power spectrum is shown inness and friction in the formation of shock waves as already
Fig. 5b). Again, the spectrum is white at low frequencies. noted in computer simulatiof22].
The small, broad peak at1 Hz indicates that the shock In the pipe flow regime, the flow rate is completely deter-
waves are not really periodic, but are only weakly quasiperimined by the geometry at the inlet, since, once a ball leaves
odic. (This peak is statistically significant and reproducible. the reservoir, it never again interacts with it. For example,
The width of the peak reflects the coherence time of the locathe outlet widthD no longer plays any role in the flow rate.
periodicity observed in Fig. (). We roughly estimate the This should be contrasted with the reverse situation found in
coherence time to be-2 s, which is only about twice the the steady flow regime. Also, the length of the funnel is
apparent period and is why the peak is so weak in the firsagain irrelevant as far as the flow rate is concerned. Thus it
place. The peak at 60 Hz is due to the noticeable order of would appear that the interesting dynamics, that is, the dy-
the balls along the flow direction as they leave the shockiamics that determine the flow rate, move from the outlet to
region. the inlet asB is decreased. Presumably in the intermittent
As discussed in the preceding section, the spectra maggegime, the overall geometry is important since the shock
depend on the measuring positignin Fig. 6, we compare waves can propagate the length of the system, communicat
the spectrum shown in Fig (15 measured at=20 cm with  ing information back upstream. In the pipe flow regime, in-
another measured at=50 cm. They are qualitatively simi- formation cannot be transmitted upstream.
lar. In particular, the peak from the quasiperiodic shock A raw signal measured in the pipe flow regime is shown

waves can still be seen. in Fig. 4(c). One can easily distinguish now the passing of
individual balls. A composite power spectrum is shown in
C. Pipe flow: B< 0.05° Fig. 5(c). There is some weak structure between 100 mHz

. ) . . . and 10 Hz which we attribute to the fluctuations of the sta-
At this point, the funnel is effectively a parallel pipén  ionary shock waves through the measuring point. At high

fact, the angle subtended by a ball radius over the length Qfequencies, one can see the details of the shape function of
the funnel is 0.0459.The shock waves are now stationary, an individual ball.

the one farthest upstream20-30 cm from the reservoir,
with the rest nearly evenly spaced downstreard0 cm
apart.(Their positions, however, fluctuate as much-a%0
cm during a run. Figure 3c) shows a snapshot of a single ~ Spatial correlations in the flow were measured by using
shock region. The balls roll more or less freely betweerfwo measuring devices and computing the cross-correlation
shock waves until they collide with a shock frafatrrow). function C(x,/,7)=V(x+/,t+ 1)V(x,t) where / is the

The mechanism that now generates the shock waves &eparation of the two measuring points and the bar denotes a
somewhat different than in the intermittent flow regime.time average(This function will depend o since the sys-

D. Spatial correlations
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145 Lonbvn el et b FIG. 9. Geometry for the total energy argument.
0.00.5 10 15 2.0 25 3.0 3.5 4.0 45 5.0 . . . .
: T (s) difficult to produce a shock wave until the density behind the

previous one has sufficiently decreased. This would also ex-
) , , , _plain the quasiperiodicity.
FIG. 7. Cross-(jorrelatlon functhn for an mterrmttent floyv with As mentioned in the Introduction, density waves have
Er:elg gqrmlgf:atﬁo’::(k: vsgv(;m’ and”=20 cm. The first peakis the - o0, previously observed by Baxteral. in a wide-angle
! . (20°-60°) hopper filled with sand 2]. Since, as our experi-
ment shows, the dynamics strongly depend on the angle, they
tem lacks translational invariange A measurement of may be observing a different process altogether, possibly
C(x,7,7) is shown in Fig. 7 for an intermittent flow with the connected with the dilatant fluctuations we see at our largest
same configuration as in Sec. llIB witk=50 cm and funnel angles. Their much lower wave speéalsout—2 to
/=20 cm. The peak at~0.3 s is due to the correlations +2 cm/s depending on the hopper angi¢so suggest this.
caused by the passage of a shock wave, i.e., it is the time lag
of a shock wave as it passes from one measuring point to the E. Other geometries

next. (Some weak oscillations are also visible near the har- \easurements were made using geometries other than the
monics of this peak since the shock waves are quasipeniodicone presented here. An early model with a sharp transition
Figure 8 shows the position of this peak as a function of  from the funnel to the reservoir always jammed permanently
the separation’”. The dashed line is a linear fit,=/7vs  if B were too small, necessitating the curved transition
yielding a mean shock wave velocity,~70 cm/s which is  shown in Fig. 2. A flow between two semicircles of radius 25
consistent with observations and with the estimate in Seacm was also studied, being the simplest possible curved con-
[11B. (It should be pointed out, however, that the shock wavestriction. The power spectra in this case were completely
velocity is almost certainly not constant as it propagates.white, aside from short-range correlations, since shock
The dip before the peak indicates that when a shock wave waves cannot form in such a short space.

produced, it represses for a short tisa®.2 s the production

of another, i.e., there is a minimum distance between shock IV. FLOW RATE MEASUREMENTS

waves of~ 14 cm. This seems reasonable since it is probably ) . .
A simple but instructive total energy argument has been

given by Brown[28] to compute the flow rate. We briefly

LN NN BN B review it here with some slight alterations. The geometry is
0.8 i shown in Fig. 9 and applies to flow in both two and three
1 dimensions. First, consider the total enefgyof a ball of
[ ] massm and radiusa rolling (without slipping with velocity
-~ 06 | - v. If we modify Brown’s work by including the rotational
ONN -1 i i = 1/2mp?
A i energy, this can be written aE=1/2«mv“+mgrcosp
—~ f 1 wherex=1+1/ma and|l=3/5ma’ is the moment of iner-
= 0.4 [ ] tia, hencex=8/5. (In two dimensions, where the balls roll
= - { 4 down an inclined plane, we also hage-gsiné.) Then, the
0.2 L_ 1 energy per unit mass is
20 },—{ )
e ] 1,
Y QL AR PR BN P €= 5 kv +grcosp. N
0.0 10.0 20.0 30.0 40.0
A (crn) The granular material is now considered to be an incom-

pressible fluid, which is only a valid assumption in the steady

FIG. 8. Position of the first peak in the cross-correlation func-flow regime. Since only gravity acts on the flow, the pressure
tion as a function of the separation. The inverse of the slope is thbeing constantsee Sec.)| Eq. (1) applies to a fluid as well.
shock wave velocity. Furthermore, if the velocity field has only a radial compo-
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nent, then conservation of mass requires that 8 ( de rees)
v(r,d)=—\(¢)/r% * whered is the dimension of the sys- g

tem and\ (¢) is a function of the polar anglé only. Sub-
stituting this into Eq.(1), we can compute the total time
derivative ofe:

FIG. 11. The average flow rate as a function of the opening
angle. The dashed line is a power-law(fiee text

de _ de \2(¢) time. After a short transient time, the flow quickly reached
GtV gy Y| ~«(d=1) g1 +gcosp|, () steady state, although there could be large fluctuations. For

typical runs of 2—3 min, the error was1% for the steady
which is shown schematically in Fig. 10 as a functiorrof  flow regime, and as large as10% in the intermittent re-
Brown then postulated that energy can only be dissipatedime where the flow visibly fluctuated the most. We will
in the flow. Hence the radius at whiahe/dt switches sign  now examine the flow rate as a function of the three flow
(the minimum in the energymust correspond to the radius parameters discussed in Sec. Il.
of the outletRy=D/2sin3 where the balls leave the funnel
and roll freely(i.e., without dissipative interactiond Since

we are always below the angle of approach, we will ignore A. Opening angle 8

the statistically empty space correctiGgee Sec. I).] This Figure 11 shows a measurement of the average flow rate
condition atde/dt=0 vyields Q as a function of8 with the same configuration described
12 in Sec. Ill, i.e.,,D=10 mm andf#=4.1°. Unexpectedly, the
N = 9 Re~V2c0d/2g,. ) flow rate had a maximum g8~0.5° which is in the inter-
k(d—1) 0 mittent flow regime. The steady flow regime is to the right of

_ _ the peak and the pipe flow regime to the left. The dashed line
The volume flow rate iQy=fv(r,¢)dA, which for small i the steady flow regime is a power-law fit yielding

B (so there is no stagnant regjoand small6 (if d=2) o~ 04 which differs slightly from the predicted value
yields the simple result given by Eq.(5), although it is probably necessary to mea-
1 sure at largep to avoid the peak. The fit also yields a pack-
~ _— —12:1/2312 0~ 12 p1/2 _ ing fractionC=0.45 which is lower than one would expect
Qu= 5w gD (d=2), “4a from the nearly close packed structure observed in Fig. 3
This is probably because the flow rate is actually determined
T B by the geometry at the outlet where, due to dilatancy, the
Qv= gX V2gt?D2gm 12 (d=3). (4b) density is lower than it is upstreaifiVe are aware that this
power-law fit, and those presented later, only cover a small
Note that the exponent fg8 does not depend on the dimen- range of parameter values, but the general consistency with
sion. Eqg. (5) is at least strongly indicative of its validity in the
The number flow rate, which we actually measure, is thersteady flow regime.
Q=nQy wheren is the mean number density and can be The flow rate was also measured wilh=15 and
written asn=C/V4 whereC is the packing fraction an¥f D =25 mm. All three measurements are shown in Fig. 12.
is the volume of a balli.e., the projected areadf=2). Thus  The flow rate has been rescaled by a fac®tD,)*? where
the flow rate in our experimentd&2) in the steady flow Dy=10 mm(so that the data shown in Fig. 11 remain un-

regime is predicted to be changed As predicted by Eq(5), all three measurements
converge in the steady flow regime at laggelt also appears
_ E i 1o 32511212 5 that they approach the same valuegat 0, suggesting that

Q~D%*2in the pipe flow regime also. Each also has a peak,
always in the intermittent flow regime. However, the peak
The packing fractiorC is the only unknown quantity. positions and amplitudes are clearly different for the differ-

The average flow rate was measured by simply countingnt configurations. In fact, it appears that the peak position
the number of balls that left the system in a given amount of3,~cD/L, wherelL is the length of the funnel and is a

T4 wa’
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FIG. 12. The average flow rate for three different outlet widths.
The flow rate has been rescaled witlh=10 mm (see text The . .
dashed lines are a guide to the eye. FIG. 14. The average flow rate as a function of the outlet width.

The dashed line is a power-law fiee text
number of the qrder of unity. .Th|s sugges_ts that the fu.nne!/vhich actually controls the flow rate. Recall that in describ-
length plays an important r_ole n t_h_e Intermittent flow reg|_meing the general behavior of the system in Sec. Ill, we noted
a_Ithough we did not te_st_th|s epr|C|tIy._ Itis, in effect, a finite that the point which determines the flow rate moves from the
size cutoff for the validity of Eq.(5), 8., where the flow outlet to the inlet a3 is decreased. Thus, for steady flow,
crosses over from steady to intermittent flogwve also

. . . obviously 8* =8 andD* =D. As B (and hence3*) is de-
zinat/ef )OUt in Sec. Il C that pipe flow seems to occur forcreased, the flow rate increases following Eg. We then

. . . cross over to the intermittent flow reginfat a point deter-
Let us consider Fig. 11 again. If we extrapolate the pre- ging P

- i mined by the length of the funnehnd eventually to the pipe
diction of Eq..(_5) to the peak, We can use our hypothesis forflow reg)i/me Whegre the flow rgi becomes s)énsitiveptg the
the peak position to a”"{g at an expression fc_)r_the peak fIO"E;eometry at the inlet. Here, as illustrated in Fig.2*, be-
rate, namelyQ(8,) ~ DL (Of course, at sufficiently large omes rapidly larger thai, and the flow rate now de-

e et et etheases. Durng the cross ou ol becames sl
arger thanD so this scenario also explains the observed

asL—z.) Thus if we plotQ/D vs B/D the data shown in dependence of the flow rate @ at 3=0 since it predicts

Fig. 12 should collapse except in the pipe flow regime nea A M3/2 % s :
B=0. This appears to be the case, as shown in Fig. 13. {;‘358@400) D¥4 8*(0)]~ Y2 From Fig. 11 we see that

Although Eq.(5) appears to fail in the intermittent and
pipe flow regimes, we can, nevertheless, use it to explain the )
presence of a peak in the flow rate. Since the flow in the pipe B. Outlet width D
flow regime is, in fact, steadst the inlet we can still use Eq. Figure 14 shows the average flow r&eas a function of
(5) if we consider an effective opening angl¥ (8) and  D/a with fixed 8=3.1° (i.e., steady flow and §=4.1°. It
outlet widthD* (8) determined by the geometry at the point will be noted that there are discrete jumps in the flow rate.
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~ - 4
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8/(0/D,) 6 (degrees)
FIG. 13. Rescale vs rescaledB with Dy=10 mm(see text FIG. 15. The average flow rate as a function of the inclination

The dashed lines are a guide to the eye. angle. The dashed line is a power-law(fiee text
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There is obviously no flow whenD/a<2. When the flow can be controlled by the opening angleAt rather
3=D/a=<4, stable arches form in the outlet causing permasmall angles, the flow has different flow regimes. For
nent jams and the flow stops. This happens again whepg>2° we find a steady flow with weak dilatant fluctuations.
5<D/a=<6. At other values o0D/a, the flow does not jam In this case, the flow rate is determined by the geometry at
(even for sufficiently long runsalthough a steplike structure the outlet. When 0.12 8=<1°, the flow exhibits large den-
is still discernible in the data fdb/a>6. The dashed line is  sity fluctuations in the form of quasiperiodic kinematic shock
a power-law fit which yieldQ~D™* in reasonable agree- \aves. The flow rate is a maximum in this regime. When
ment with Eq.(5). The packing fraction i<C=0.51, again  5<0.05°, the shock waves become stationary and the flow
lower than expected, but consistent with the value found in4te is determined by the geometry at the inlet which actually
the preceding section. causes it to decrease. For all the flow regimes, the power
spectra of the number density fluctuations were white at low
C. Inclination angle frequencies.

Figure 15 shows the average flow r&eas a function of

0 with fixed B=2.1° (steady flow and D=10 mm. For

0=<0.7°, the balls will not roll. The dashed line is a power- ACKNOWLEDGMENTS
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