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We have investigated a granular flow consisting of a single layer of uniform balls in a two dimensional
funnel. The qualitative behavior of the flow depends in a sensitive way on the geometry. For a particular
configuration in which only the funnel opening angleb is varied, we find three regimes. Whenb.2°, the flow
is dense and steady, and the flow rate is determined by the geometry at the outlet. When 0.1°&b&1°, the flow
is intermittent, consisting of quasiperiodic kinematic waves, probably shock waves, propagating against the
flow. The flow rate reaches its maximum in this regime. Whenb,0.05°, the waves become stationary, and the
flow rate is now determined by the geometry at the inlet. We also measure the number density fluctuations of
the flow and their power spectra. For all flows, the power spectra are white at low frequencies with structures
at higher frequencies resulting from the kinematic waves and short-range correlations.
@S1063-651X~96!02510-X#

PACS number~s!: 46.10.1z, 83.70.Fn, 05.40.1j

I. INTRODUCTION

The properties of granular matter are as varied as they are
unusual.~For reviews and recent developments, see, for ex-
ample, Refs.@1–7#.! In particular, granular flows differ in
many respects from hydrodynamic flows. It is known, for
example, that the flow rate in an hourglass is essentially in-
dependent of the head of the granular material@8#. Further-
more, the flow is not necessarily steady, for example, there
can be fluctuations in the flow rate.

In this paper we have examined the flow properties of a
single layer of uniform balls rolling down an inclined plane
through a two-dimensional funnel@9#. It is therefore a two
dimensional analog of an hourglass, but with the capability
to actually observe details of the flow. We measure average
flow rates and also number density fluctuations and their
power spectra.

Previous experimental studies of granular flows have
mostly concentrated on measuring steady-state properties of
stresses and flow velocities@10#, and density profiles@11#.
Dynamic studies are less common. Density waves have been
observed in wide-angle hoppers@1,12#. Dynamic measure-
ments have been made of the density fluctuations of sand in
an hourglass by Schick and Verveen@13#. They found den-
sity waves in the form of ‘‘slugs’’ whose power spectrum
yielded an apparent 1/f region. This experiment was the mo-
tivation for the present work, although, as will be shown
later, we find no 1/f noise.~We have also repeated the hour-
glass experiment and suggest a simpler interpretation of the
power spectrum@14#.! More recently, Wuet al. @15# have
studied the flow rate fluctuations in an hourglass and have
observed a periodic ‘‘ticking’’ when there is a counterflow of
air.

Theoretically, a wide variety of methods including plas-
ticity theory @2#, hydrodynamics@16#, soil mechanics@17#,
kinetic gas theory@18#, and statistical mechanics@19# have
been applied to granular matter. However, these tend to tar-
get only certain aspects of the observed phenomena, and
there is as yet no comprehensive theory. Computer simula-
tions have been performed using molecular dynamics~MD!

@20,21#, lattice gas automata~LGA! @22#, and cellular au-
tomata@23#. Both the MD and LGA simulations have found
density waves in the flow. In particular, the LGA simulations
of flow in a pipe @22# produced kinematic waves with 1/f
noise in the power spectrum of the density fluctuations, al-
though only for special values of injection rates or average
densities. Nevertheless, the presence of dissipation and
boundary roughness were found to be of paramount impor-
tance in generating kinematic waves.~We have also been
informed that when friction was turned off completely in
MD simulations, there were no kinematic waves@24#.!

The paper is organized as follows. In Sec. II we describe
the experimental setup. In Sec. III we discuss the qualitative
behavior of the flow, and present the number density fluctua-
tion measurements and their power spectra. The flow rate
measurements are described in Sec. IV, and finally Sec. V
contains a summary of the work.

II. EXPERIMENT

The granular material was composed of 3.175 mm diam-
eter brass balls~0.2% sphericity! of mass 0.14 g. Brass was
necessary to avoid problems caused by the slow magnetiza-
tion of steel balls. Approximately 50 000 balls were used in
the experiment. When piled, their angle of repose was deter-
mined to be;15°.

The experimental setup is shown in Fig. 1~a!. Two alumi-
num walls ~A! of height 3.2 mm~slightly greater than one
ball diameter! rested on a 3 mlong transparent acrylic plane
~B!. The walls had a 2 mlong straight section which then
curved smoothly at the top~50 cm radius of curvature! to
form a reservoir area~C!. They could be adjusted so as to
vary the geometry of the funnel and were grounded to dis-
charge static electricity carried by the balls. A second trans-
parent covering sheet~not shown! was placed on top of the
walls. ~This was necessary since the kinematic waves which
we will discuss later could be sufficiently violent to kick
balls out of the funnel.! The plane~B! was mounted to a
table at one end by a rotating joint~D! so its incline could be
adjusted with a jack~E!.
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A device for measuring the local number density, shown
in detail in Fig. 1~b!, consisted of a slide~F! mounted on a
rail ~G! so that it could be positioned anywhere along the
funnel. A 1 mW 670 nmlaser diode~H! and a photodiode~I!
were mounted on the slide so that the beam passed through
the plane~B!. The beam was focused in the plane of the balls
forming a spot;1% of the cross-sectional area of a ball.
This is effectively a point measurement and the photodiode
output was either low or high depending on whether there
was a ball in the beam or not. All measurements were made
along the center line of the funnel.~We also made measure-
ments using a 1 mmwide line detector which covered the
width of the funnel, but this was technically cumbersome
and yielded essentially the same results.! The detector was
light shielded as a precaution, although the signal-to-noise
ratio was not a problem. The signal from the photodiode was
measured with a HP3562A Dynamic Signal Analyzer. The
frequency response of the photodiode is nominally flat up to
;10 kHz, but we never measured beyond 1 kHz.

A top view schematic of the geometry of the funnel is
shown in Fig. 2~with the exception of the inclination angle!.
There were three independent flow parameters which were
varied in the following ranges: opening angleb ~0°–4°),
outlet widthD ~0–30 mm!, and inclination angleu ~0°–5
°). The detector positionx was measured from the outlet.
The other parameters in the figure will be discussed later.

At the beginning of a run, the outlet was blocked, and the
balls were poured onto the reservoir area and allowed to fill
the system. After a short transient period, the behavior of the
flow was independent of the initial configuration of the balls
in the reservoir, whether random or close packed, or simply
left in a pile, which was by far the most convenient.~Since
the angle of inclination was always far below the angle of
repose, the balls would form a two-dimensional layer well
before entering the funnel.! Flow rates varied between;50
and 500 balls/s, so a single run with 50 000 balls lasted 100–
1000 s accordingly. In most cases, to obtain longer runs and

hence better averages, the balls were recycled by pouring
them back onto the reservoir area in such a way that the flow
was not visibly disturbed.

Interstitial fluid effects

The Bagnold number measures the ratio of the viscous
drag on an object to its weight, and hence the importance of
the effect of the interstitial fluid on the granular flow. For
laminar flow around a~nonrotating! sphere of radiusa and
massm, Ba56ph v̄a/mg whereh is the dynamic viscosity
of the fluid, v̄ is the mean relative velocity, andg is the
gravitational acceleration. In our experiment, the largest ve-
locity a ball can achieve~i.e., rolling freely down the plane!
is ;100 cm/s, so withh51.731024 g/cm s for air, Ba
;1024, which would suggest that viscous drag is an unim-
portant effect. However, strong collective effects can appear
for sand flow in an hourglass even though the Bagnold num-
ber is small@15#. We do not encounter these effects since our
system is not sealed and there is no counterflow of air.

We must also consider if the interstitial fluid flow is, in
fact, laminar, since turbulence can significantly increase the
viscous drag. Using the numbers given above, and the kine-
matic viscosity for airn50.13 cm2/s, we obtain a Reynold’s
number Re52av̄/n'130. Boundary layer separation, time
dependent flow, and turbulence occur at Re'25, 130, and
200, respectively@25#, so for our worst-case estimate, we
may be nearing a regime where turbulence will have some
effect on the flow.

III. GENERAL BEHAVIOR

A well-known property of the flow of granular material
through apertures is the existence of stagnant regions@1#. All
flow occurs in a pseudofunnel with an opening anglebc
called the angle of approach. For example, for steel balls in
two dimensions,bc'15° @1#. In the present experiment, we
are always well below the angle of approach so there is never
a stagnant region. The position of the free-fall arch, the ra-
dius at which the balls flow freely and no longer engage in
collective behavior, is given byR05(D2k)/2sinbc where
k is the statistically empty space correction@1#. If b,bc ,
thenk is small, and the free-fall arch occurs at the physical
end of the funnel, i.e.,R05D/2sinb. @However, we have
found that at very small angles (b,1°) fluctuations become

FIG. 1. ~a! The experimental setup.~b! A number density mea-
suring device~see text!.

FIG. 2. A schematic top view of the funnel showing the geom-
etry.
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important and the free-fall arch is no longer well defined.#
The fundamental property of dilatancy, formulated by

Reynolds@26#, is still conceptually important to the under-
standing of granular flows. It simply states that a granular
material must expand in order to flow. In particular, this will
result in large density gradients near an aperture which may
create density waves@1#. If the granular material is treated as
a continuum, it is possible to show that there will be two
types of density waves: kinematic~mass transport! and dy-
namic ~sound! @20,27#. In this work, we only observe and
measure kinematic waves.

We will now describe the general behavior of the flow.
Since it appeared that the funnel opening angleb ~see Fig. 2!
had the strongest effect, we will use it to parametrize the
different flow regimes, although the actual values will, of
course, depend on the particular configuration. For the rest of
this section, we consider a configuration where the other pa-
rameters were fixed atD510 mm andu54.1°. The position
of the detector wasx520 cm unless stated otherwise.

A. Steady flow:b>2°

In this regime the flow is quite dense, as may be seen in a
snapshot video picture in Fig. 3~a!. Hence, since the balls are
monodisperse, they tend to arrange in a triangular lattice and
always such that a primitive lattice vector is parallel to one
of the walls. Locally, this structure has the maximum pack-
ing fraction in two dimensionsCmax5p/2A3>0.91. As the
funnel narrows, however, the triangular lattice must neces-
sarily rearrange itself, forming the white shear lines and the
triangular crystallites observable in the figure. The balls ap-
pear to mostly roll, but since they are in close contact, they
must necessarily slide against each other.

As discussed earlier, dilatant fluctuations are, in fact, ob-
served at the aperture, i.e., the outlet, of the funnel. They
appear to occur nearly periodically, which may be a conse-
quence of the periodicity of the shear lines, although it is
possible that they are inherently periodic. However, these
fluctuations are rather weak, and the flow is essentially
steady. We also note that in this regime, the flow rate is
completely determined by the geometry at the outlet, e.g., the
outlet width D. Neither the geometry at the inlet to the
straight section nor the length of the funnel affect the flow
rate.

The features just discussed are evident in the number den-
sity measurements and their power spectra. The raw signal
V(t) from the photodiode~which is linearly related to the
number density! is shown for this regime in Fig. 4~a!. Due to
the high density, the beam is mostly blocked. A composite
power spectrum of this signal is shown in Fig. 5~a!. The
spectrum is white at low frequencies with some structures at
higher frequency and finally a rolloff. The rolloff reflects the
shape function of an individual ball. This is clear if we com-
pute the mean velocityv(x) of a ball at the measuring posi-
tion x. The number flow rate isQ5nv(x)D(x) wheren is
the mean number density, andD(x)>D12xb is the width
of the funnel at the measuring point. The mean number den-
sity can be written asn5C/pa2 whereC is the packing
fraction. Thus, for a typical flow rate ofQ5150 balls/s, and
C5Cmax, we find that atx520 cm, v̄'5.5 cm/s. The fre-
quency associated with a single ball is thenv̄/2a'20 Hz,
which is approximately where the rolloff occurs.

The small peak at;0.5 Hz is attributed to the nearly
periodic dilatant fluctuations produced at the outlet. The
larger peaks are due to the shear lines. The distanceD(x)
between the shear lines is found approximately from the ge-
ometry to beD(x)>D(x)/A3'1.4 cm atx520 cm. This
results in a periodicity atv̄/D'4.0 Hz which is the peak
indicated by the arrow in Fig. 5~a!. The peaks at higher fre-
quencies are its harmonics.~There is also a weak peak at
;2 Hz which would be the actual periodicity of the shear
lines if one took their orientation into account. However,
since we are making a point measurement, it is only weakly
sensitive to the orientation.! There are no peaks from the
close packed triangular lattice of the balls since the lattice
crosses the light beam at an angle which depends onb and
hence never through a lattice vector~except for special val-
ues ofb).

Although the detailed shape of a spectrum depends on the
measuring positionx, it is not qualitatively affected by vary-
ing it. For example, at largerx the distance between shear
lines increases and the mean flow velocity decreases, hence
the corresponding peak positions shift to lower frequencies.

B. Intermittent flow: 0.1° &b&1°

Below b;1° the small dilatant fluctuations observed in
the steady flow regime form kinematic waves which propa-
gate against the flow. Atb51° they tend to decay rapidly,
but byb50.2° they propagate the whole length of the fun-
nel, only decaying in the reservoir. These are easily visible
by eye and appear as rather local high-density packets shoot-
ing upstream at about 1 m/s. They also appear to be pro-
duced at roughly 1 s intervals. Consequently, usually no
more than 2–3 packets can be seen in the system at one time.
As b is decreased further, the nature of the shock waves
seems to change. Whenb;0.1°, they can be produced any-
where in the funnel. The mechanism for producing them no
longer seems to be the dilatant fluctuations at the outlet, but
rather the interactions of the balls with the boundaries of the
funnel, and with each other. Interestingly enough, the flow
rate reaches its maximum in this flow regime atb;0.5°. We
will discuss this later in Sec. IVA.

A video snapshot of a packet is shown in Fig. 3~b! for
b50.2°. At the left, one observes the density slowly build-

FIG. 3. Snapshot video pictures of the flow withD510 mm and
u54.1°. The system is illuminated from below. Each picture is 25
cm long with its center atx520 cm. The flow is from right to left.
~a! Steady flow. The balls form a triangular lattice with white shear
lines between triangular crystallites.~b! Intermittent flow. There is a
shock front~arrow! moving to the right against the flow.~c! Pipe
flow. In the center is a stationary~but fluctuating! shock front~ar-
row!.
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FIG. 4. The raw time signal from the photodiode, sampled at
frequencyf s , for the different regimes. A high level~0 V! indicates
that the beam is blocked. The signals have been Nyquist filtered
which results in some ringing in~a! and ~b!. ~a! Steady flow
( f s5200 Hz!. The flow is dense and the beam is mostly blocked.
~b! Intermittent flow (f s5200 Hz!. High-density shock waves block
the beam in an apparently periodic manner.~c! Pipe flow (f s52
kHz!. The passage of individual balls can be observed.

FIG. 5. Composite power spectra in the different flow regimes.
The spectra consist of three separate measurements: 0–0.1 Hz~10
averages!, 0.1–80 Hz~200 averages!, and 80–800 Hz~200 aver-
ages!. Structures below 0.1 Hz are not statistically significant.~a!
Steady flow. The arrow indicates the peak from the periodic shear
lines. ~b! Intermittent flow. The weak peak at;1 Hz is from the
quasiperiodic shock waves.~c! Pipe flow.
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ing up to a short, nearly close packed region, then dropping
rather abruptly~arrow! to a much lower-density region. This
strongly resembles the profile expected for a kinematic shock
wave with some broadening due to dissipation@27#. This is
not surprising since it is well known that under some very
general conditions kinematic waves will evolve into shock
waves that may propagate against the flow@27#. In the low-
density region the balls both roll freely and slide when they
collide. They do not noticeably bounce backward, even at the
shock front.

We can roughly estimate the expected shock wave veloc-
ity from the available data. A kinematic shock wave travels
with velocity u5(n2v22n1v1)/(n22n1) where n1,2 and
v1,2 are the mean number densities and velocities to the right
~1! and left ~2! of the shock front~arrow! in Fig. 3~b! @27#.
From the figure, we find thatn2 /n1'2. From observing the
pulse widths for individual balls in the low-density region,
we estimate thatv1'50 cm/s.~The mean ball velocity at
x520 cm, deduced from the flow rate as in Sec. III A, is
&35 cm/s.! Since the balls are observed to momentarily stop
at the shock front, we will suppose thatv2'0 ~or at least
that v2 /v1!n1 /n2). Thus we predict thatu'250 cm/s
where the sign indicates that the shock wave moves in the
direction opposite the flow. This is consistent with our mea-
surements which we show later in Sec. IIID.

A raw signal measured in the intermittent flow regime is
shown in Fig. 4~b!. The short blocked regions are a conse-
quence of the short, high-density shock waves. As was ob-
served by eye, these appear to occur almost periodically with
a period of;0.8 s. A composite power spectrum is shown in
Fig. 5~b!. Again, the spectrum is white at low frequencies.
The small, broad peak at;1 Hz indicates that the shock
waves are not really periodic, but are only weakly quasiperi-
odic. ~This peak is statistically significant and reproducible.!
The width of the peak reflects the coherence time of the local
periodicity observed in Fig. 4~b!. We roughly estimate the
coherence time to be;2 s, which is only about twice the
apparent period and is why the peak is so weak in the first
place. The peak at;60 Hz is due to the noticeable order of
the balls along the flow direction as they leave the shock
region.

As discussed in the preceding section, the spectra may
depend on the measuring positionx. In Fig. 6, we compare
the spectrum shown in Fig. 5~b! measured atx520 cm with
another measured atx550 cm. They are qualitatively simi-
lar. In particular, the peak from the quasiperiodic shock
waves can still be seen.

C. Pipe flow: b< 0.05°

At this point, the funnel is effectively a parallel pipe.~In
fact, the angle subtended by a ball radius over the length of
the funnel is 0.045°.! The shock waves are now stationary,
the one farthest upstream;20–30 cm from the reservoir,
with the rest nearly evenly spaced downstream;40 cm
apart.~Their positions, however, fluctuate as much as610
cm during a run.! Figure 3~c! shows a snapshot of a single
shock region. The balls roll more or less freely between
shock waves until they collide with a shock front~arrow!.

The mechanism that now generates the shock waves is
somewhat different than in the intermittent flow regime.

When balls enter the pipe from the reservoir, at first they roll
freely, accelerating down the incline. It would appear that
when they reach a certain velocity, they experience a serious
interaction with the covering sheet, slowing them down dra-
matically. Immediately, balls from behind back up and form
a jam. As balls leave the jam, they repeat this process, ac-
counting for the nearly equally spaced positions of the shock
waves. When the covering sheet was removed, no jams were
observed at all. This demonstrates the importance of rough-
ness and friction in the formation of shock waves as already
noted in computer simulations@22#.

In the pipe flow regime, the flow rate is completely deter-
mined by the geometry at the inlet, since, once a ball leaves
the reservoir, it never again interacts with it. For example,
the outlet widthD no longer plays any role in the flow rate.
This should be contrasted with the reverse situation found in
the steady flow regime. Also, the length of the funnel is
again irrelevant as far as the flow rate is concerned. Thus it
would appear that the interesting dynamics, that is, the dy-
namics that determine the flow rate, move from the outlet to
the inlet asb is decreased. Presumably in the intermittent
regime, the overall geometry is important since the shock
waves can propagate the length of the system, communicat-
ing information back upstream. In the pipe flow regime, in-
formation cannot be transmitted upstream.

A raw signal measured in the pipe flow regime is shown
in Fig. 4~c!. One can easily distinguish now the passing of
individual balls. A composite power spectrum is shown in
Fig. 5~c!. There is some weak structure between 100 mHz
and 10 Hz which we attribute to the fluctuations of the sta-
tionary shock waves through the measuring point. At high
frequencies, one can see the details of the shape function of
an individual ball.

D. Spatial correlations

Spatial correlations in the flow were measured by using
two measuring devices and computing the cross-correlation
function C(x,l ,t)5V(x1l ,t1t)V(x,t) where l is the
separation of the two measuring points and the bar denotes a
time average.~This function will depend onx since the sys-

FIG. 6. Dependence of the power spectrum on the measuring
position.
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tem lacks translational invariance.! A measurement of
C(x,l ,t) is shown in Fig. 7 for an intermittent flow with the
same configuration as in Sec. III B withx550 cm and
l 520 cm. The peak att;0.3 s is due to the correlations
caused by the passage of a shock wave, i.e., it is the time lag
of a shock wave as it passes from one measuring point to the
next. ~Some weak oscillations are also visible near the har-
monics of this peak since the shock waves are quasiperiodic.!
Figure 8 shows the position of this peakt1 as a function of
the separationl . The dashed line is a linear fitt15l /vs
yielding a mean shock wave velocityvs'70 cm/s which is
consistent with observations and with the estimate in Sec.
III B. ~It should be pointed out, however, that the shock wave
velocity is almost certainly not constant as it propagates.!
The dip before the peak indicates that when a shock wave is
produced, it represses for a short time&0.2 s the production
of another, i.e., there is a minimum distance between shock
waves of;14 cm. This seems reasonable since it is probably

difficult to produce a shock wave until the density behind the
previous one has sufficiently decreased. This would also ex-
plain the quasiperiodicity.

As mentioned in the Introduction, density waves have
been previously observed by Baxteret al. in a wide-angle
~20°–60°) hopper filled with sand@12#. Since, as our experi-
ment shows, the dynamics strongly depend on the angle, they
may be observing a different process altogether, possibly
connected with the dilatant fluctuations we see at our largest
funnel angles. Their much lower wave speeds~about22 to
12 cm/s depending on the hopper angle! also suggest this.

E. Other geometries

Measurements were made using geometries other than the
one presented here. An early model with a sharp transition
from the funnel to the reservoir always jammed permanently
if b were too small, necessitating the curved transition
shown in Fig. 2. A flow between two semicircles of radius 25
cm was also studied, being the simplest possible curved con-
striction. The power spectra in this case were completely
white, aside from short-range correlations, since shock
waves cannot form in such a short space.

IV. FLOW RATE MEASUREMENTS

A simple but instructive total energy argument has been
given by Brown@28# to compute the flow rate. We briefly
review it here with some slight alterations. The geometry is
shown in Fig. 9 and applies to flow in both two and three
dimensions. First, consider the total energyE of a ball of
massm and radiusa rolling ~without slipping! with velocity
v. If we modify Brown’s work by including the rotational
energy, this can be written asE51/2kmv21mgrcosf
wherek511I /ma2 and I53/5ma2 is the moment of iner-
tia, hencek58/5. ~In two dimensions, where the balls roll
down an inclined plane, we also haveg→gsinu.! Then, the
energy per unit masse is

e5
1

2
kv21grcosf. ~1!

The granular material is now considered to be an incom-
pressible fluid, which is only a valid assumption in the steady
flow regime. Since only gravity acts on the flow, the pressure
being constant~see Sec. I!, Eq. ~1! applies to a fluid as well.
Furthermore, if the velocity field has only a radial compo-

FIG. 7. Cross-correlation function for an intermittent flow with
D510 mm,u54.1°,x550 cm, andl 520 cm. The first peak is the
time lagt1 of a shock wave.

FIG. 8. Position of the first peak in the cross-correlation func-
tion as a function of the separation. The inverse of the slope is the
shock wave velocity.

FIG. 9. Geometry for the total energy argument.
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nent, then conservation of mass requires that
v(r ,f)52l(f)/r d21 whered is the dimension of the sys-
tem andl(f) is a function of the polar anglef only. Sub-
stituting this into Eq.~1!, we can compute the total time
derivative ofe:

de

dt
5v

]e

]r
5vF2k~d21!

l2~f!

r 2d21 1gcosfG , ~2!

which is shown schematically in Fig. 10 as a function ofr .
Brown then postulated that energy can only be dissipated

in the flow. Hence the radius at whichde/dt switches sign
~the minimum in the energy! must correspond to the radius
of the outletR05D/2sinb where the balls leave the funnel
and roll freely~i.e., without dissipative interactions!. @Since
we are always below the angle of approach, we will ignore
the statistically empty space correction~see Sec. III!.# This
condition atde/dt50 yields

l5F g

k~d21!G
1/2

R0
d21/2cos1/2f. ~3!

The volume flow rate isQV5*v(r ,f)dA, which for small
b ~so there is no stagnant region! and smallu ~if d52)
yields the simple result

QV>
1

A2
k21/2g1/2D3/2b21/2u1/2 ~d52!, ~4a!

QV>
p

8
k21/2g1/2D5/2b21/2 ~d53!. ~4b!

Note that the exponent forb does not depend on the dimen-
sion.

The number flow rate, which we actually measure, is then
Q5nQV wheren is the mean number density and can be
written asn5C/Vd whereC is the packing fraction andVd
is the volume of a ball~i.e., the projected area ifd52). Thus
the flow rate in our experiment (d52) in the steady flow
regime is predicted to be

Q5
A5
4

C

pa2
g1/2D3/2b21/2u1/2. ~5!

The packing fractionC is the only unknown quantity.
The average flow rate was measured by simply counting

the number of balls that left the system in a given amount of

time. After a short transient time, the flow quickly reached
steady state, although there could be large fluctuations. For
typical runs of 2–3 min, the error was;1% for the steady
flow regime, and as large as;10% in the intermittent re-
gime where the flow visibly fluctuated the most. We will
now examine the flow rate as a function of the three flow
parameters discussed in Sec. II.

A. Opening angleb

Figure 11 shows a measurement of the average flow rate
Q as a function ofb with the same configuration described
in Sec. III, i.e.,D510 mm andu54.1°. Unexpectedly, the
flow rate had a maximum atb;0.5° which is in the inter-
mittent flow regime. The steady flow regime is to the right of
the peak and the pipe flow regime to the left. The dashed line
in the steady flow regime is a power-law fit yielding
Q;b20.4, which differs slightly from the predicted value
given by Eq.~5!, although it is probably necessary to mea-
sure at largerb to avoid the peak. The fit also yields a pack-
ing fractionC50.45 which is lower than one would expect
from the nearly close packed structure observed in Fig. 3~a!.
This is probably because the flow rate is actually determined
by the geometry at the outlet where, due to dilatancy, the
density is lower than it is upstream.@We are aware that this
power-law fit, and those presented later, only cover a small
range of parameter values, but the general consistency with
Eq. ~5! is at least strongly indicative of its validity in the
steady flow regime.#

The flow rate was also measured withD515 and
D525 mm. All three measurements are shown in Fig. 12.
The flow rate has been rescaled by a factor (D/D0)

3/2 where
D0510 mm ~so that the data shown in Fig. 11 remain un-
changed!. As predicted by Eq.~5!, all three measurements
converge in the steady flow regime at largeb. It also appears
that they approach the same value atb50, suggesting that
Q;D3/2 in the pipe flow regime also. Each also has a peak,
always in the intermittent flow regime. However, the peak
positions and amplitudes are clearly different for the differ-
ent configurations. In fact, it appears that the peak position
bp'cD/L, whereL is the length of the funnel andc is a

FIG. 10. A schematic of the total time derivative of the energy
per unit mass.

FIG. 11. The average flow rate as a function of the opening
angle. The dashed line is a power-law fit~see text!.

54 4335TWO-DIMENSIONAL GRANULAR FLOW IN A SMALL - . . .



number of the order of unity. This suggests that the funnel
length plays an important role in the intermittent flow regime
although we did not test this explicitly. It is, in effect, a finite
size cutoff for the validity of Eq.~5!, i.e., where the flow
crosses over from steady to intermittent flow.~We also
pointed out in Sec. III C that pipe flow seems to occur for
b,a/L.!

Let us consider Fig. 11 again. If we extrapolate the pre-
diction of Eq.~5! to the peak, we can use our hypothesis for
the peak position to arrive at an expression for the peak flow
rate, namely,Q(bp);DL1/2. ~Of course, at sufficiently large
flow rates, the assumptions leading to this result must break
down otherwise the flow rate would increase without bound
asL→`.! Thus if we plotQ/D vs b/D the data shown in
Fig. 12 should collapse except in the pipe flow regime near
b50. This appears to be the case, as shown in Fig. 13.

Although Eq. ~5! appears to fail in the intermittent and
pipe flow regimes, we can, nevertheless, use it to explain the
presence of a peak in the flow rate. Since the flow in the pipe
flow regime is, in fact, steadyat the inlet, we can still use Eq.
~5! if we consider an effective opening angleb* (b) and
outlet widthD* (b) determined by the geometry at the point

which actually controls the flow rate. Recall that in describ-
ing the general behavior of the system in Sec. III, we noted
that the point which determines the flow rate moves from the
outlet to the inlet asb is decreased. Thus, for steady flow,
obviouslyb*5b andD*5D. As b ~and henceb* ) is de-
creased, the flow rate increases following Eq.~5!. We then
cross over to the intermittent flow regime~at a point deter-
mined by the length of the funnel! and eventually to the pipe
flow regime where the flow rate becomes sensitive to the
geometry at the inlet. Here, as illustrated in Fig. 2,b* be-
comes rapidly larger thanb, and the flow rate now de-
creases. During the cross over,D* only becomes slightly
larger thanD so this scenario also explains the observed
dependence of the flow rate onD at b50 since it predicts
thatQ(b50);D3/2@b* (0)#21/2. From Fig. 11 we see that
b* (0);4°.

B. Outlet width D

Figure 14 shows the average flow rateQ as a function of
D/a with fixed b53.1° ~i.e., steady flow! and u54.1°. It
will be noted that there are discrete jumps in the flow rate.

FIG. 15. The average flow rate as a function of the inclination
angle. The dashed line is a power-law fit~see text!.

FIG. 12. The average flow rate for three different outlet widths.
The flow rate has been rescaled withD0510 mm ~see text!. The
dashed lines are a guide to the eye.

FIG. 13. RescaledQ vs rescaledb with D0510 mm~see text!.
The dashed lines are a guide to the eye.

FIG. 14. The average flow rate as a function of the outlet width.
The dashed line is a power-law fit~see text!.
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There is obviously no flow whenD/a,2. When
3&D/a&4, stable arches form in the outlet causing perma-
nent jams and the flow stops. This happens again when
5&D/a&6. At other values ofD/a, the flow does not jam
~even for sufficiently long runs! although a steplike structure
is still discernible in the data forD/a.6. The dashed line is
a power-law fit which yieldsQ;D1.4, in reasonable agree-
ment with Eq.~5!. The packing fraction isC50.51, again
lower than expected, but consistent with the value found in
the preceding section.

C. Inclination angle u

Figure 15 shows the average flow rateQ as a function of
u with fixed b52.1° ~steady flow! and D510 mm. For
u&0.7°, the balls will not roll. The dashed line is a power-
law fit which yieldsQ;u0.5 in agreement with Eq.~5! and a
packing fractionC50.53 which is consistent with the previ-
ous sections.

V. SUMMARY

We have presented the results of measurements of a
granular flow in a two dimensional funnel. The behavior of

the flow can be controlled by the opening angleb. At rather
small angles, the flow has different flow regimes. For
b.2° we find a steady flow with weak dilatant fluctuations.
In this case, the flow rate is determined by the geometry at
the outlet. When 0.1°&b&1°, the flow exhibits large den-
sity fluctuations in the form of quasiperiodic kinematic shock
waves. The flow rate is a maximum in this regime. When
b&0.05°, the shock waves become stationary and the flow
rate is determined by the geometry at the inlet which actually
causes it to decrease. For all the flow regimes, the power
spectra of the number density fluctuations were white at low
frequencies.
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